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Numerical Study of a Wing-Tip Vortex
Using the Euler Equations

Robert E. Spall¤

Utah State University, Logan, Utah 84322-4130

The issueof excessive diffusionofwing-tipvortex calculationsis addressed. In particular, a second-order accurate
pressure-based � nite volume algorithm was employed to solve the Euler equations for the � ow over a NACA 0012
rectangular wing at an angle of attack of 5 deg. A computational mesh was constructed that allowed for very
localized grid clustering about the wing tip and about the vortex centerline over arbitrary downstream distances.
Comparisons with existing experimental data show that the vortex strength and core radius are well preserved at
a distance of 10 chords downstream from the wing leading edge. It is concluded that by employing well-designed
computationalgrids, second-order accurate numerical algorithmsmay present a viable alternative to higher-order
schemes in the solution of the tip vortex problem.

Introduction

T IP vortices shed from lifting surfaces of � nite span are of con-
siderable technological importance. For example, tip vortices

contribute to the induced drag of the generating surface, a situa-
tion that is exacerbatedfor low aspect ratio surfaces such as marine
propellers.The pressure driven � ow about the tip of the lifting sur-
face also decreases the ef� ciency of � uid dynamic devices such as
axial compressorsand turbomachineblades. Vortex–structure inter-
action problems, such as the blade–vortex interaction that occurs
when vortices shed from a helicopter rotor blade interact with a fol-
lowing blade, are of considerable importance; the resulting large,
unsteady forces may contribute to premature blade failure. Perhaps
the vortex–structure interaction problem that has received most at-
tention is the wake–vortex problem in which trailing wing-tip vor-
tices pose a hazard to smaller followingaircraft. In fact, the Federal
Aviation Administrationdictates the frequencyof takeoff and land-
ing at the nation’s airportsby accountingfor the presenceand demise
of these vortices.An up-to-datereview of the wake–vortex problem
may be found in Spalart.1

Of primary interest in the present work is the wake–vortex prob-
lem, and in particular, efforts at computational simulations of the
tip-vortex in the near � eld. One of the earliest sets of calculations
were thoseof Mansour2 in which the thin-layerNavier–Stokes equa-
tions were solved for the � ow over a low aspect ratio swept wing
at a freestream Mach number of 0.8, with the turbulence viscos-
ity computed using a two-layer Baldwin–Lomax model. Srinivasan
et al.3 also solved the thin-layer Navier–Stokes equations with a
Baldwin–Lomax model for the � ow over several different wings
with different tip con� gurations. In addition to the cited viscous
results, solutions to the Euler equations for subsonic and transonic
� ows about helicopter rotors were presented by Kramer et al.4 (In
this case, numerical dissipation provides the mechanism for vortex
formation.)

The numerical results in the cited studies showed reason-
able agreement with experimentally measured surface pressures,
although no comparisons between numerical and experimental re-
sults were presented for the structure of the resultant tip vortices.
However, with the relatively coarse grids employed, considerable
differences would have been expected.

Euler solutionswere also presentedby Strawn5 for the � ow about
a NACA 0015 wing using an unstructured, adaptive grid solver.
Results were compared with the experimental data of McAlister
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and Takahashi6 at distances of up to 13 chords downstream from
the wing trailing edge. The computed vortex peak swirl velocities
were considerablybelow those observed experimentally,and it was
concluded that the discrepancy was caused by the inviscid model.
It was also claimed that the rolled-up vortex was convected with
minimal numerical diffusion.However, Strawn’s5 results predicted
that the vortex core diameter increasedby a factor of approximately
5 over a distance of 10 chords.

An effort to address some of the modeling and resolutiondif� cul-
ties inherent in earlier studies was made by Dacles-Mariani et al.7

They obtained solutions to the full Navier–Stokes equations using
the INS3D-UP code with � fth-order differencing of the convective
terms for the � ow about a NACA 0012 wing. A version of the one-
equationBaldwin–Barth8 turbulencemodel was employed in which
the production term was modi� ed in an effort to suppress the eddy
viscosityin the vortex core. In a similar work,Dacles-Marianiet al.9

used a one-equation Spalart–Almaras10 model, again with modi� -
cations to the production term. For each study, results in terms of
surface pressures and streaklines compared well with experimental
data. However, prediction was limited to approximately one chord
downstreamof the trailing edge. Consequently,no � rm conclusions
can be drawn regarding the capabilities of the methodology to pre-
dict accurately the streamwise evolution of the vortex.

Hsiao and Pauley11 investigated the tip vortex formation from
a NACA 0015 rectangular wing. Their results, obtained using the
INS3D-UP codeanda Baldwin-Barth8 turbulencemodel,were com-
pared with the experimental data of McAlister and Takahashi6 at a
Reynolds number of 1.5 £ 106 and at an angle of attack of 12 deg.
Their solutions accurately captured the initial rollup of the vor-
tex; however, they concluded that the overly dissipative nature of
the turbulence model led to an excessively rapid decay of the vor-
tex as it evolved over several chord lengths. They concluded that
higher-order turbulence modeling is likely required to account for
the evolution of the vortex accurately.

More recently,Lockardand Morris12 presentedhigher-ordersolu-
tions to the Euler equationsfor the evolutionof the tip vortex formed
over a NACA 0012 wing. Their � ow conditions corresponded to
those in the experimental work of Devenport et al.13 Comparisons
were made with experimental data at distances of up to nine chords
downstream of the wing trailing edge. Even with the higher-order
differencing, the effects of numerical dissipation were found to be
quite signi� cant on the � nest H–H-type grids employed.

Results of these previous studies indicate that quantities such as
surface pressure and the initial rollup of the vortex structure may
be computed with good accuracy. However, the radial diffusion of
angular momentum due to both insuf� cient grid resolution and in-
adequate turbulence modeling continue to represent primary im-
pediments to the accurate prediction of tip vortices once the rollup
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processis completed,typicallywithinoneto two chordsdownstream
from the trailing edge. Past efforts at minimizing the effects of nu-
merical dissipation have centered around the use of higher-order
differencing schemes, whereas efforts in turbulence modeling have
involvedattemptsat limiting the turbulenceviscositywithin the vor-
tex core throughad hoc modi� cations to model production terms. It
appears that little attention has been paid to methods involving the
use of innovative grids and higher-order turbulence modeling.

The present work represents an effort to address the problem of
excessive diffusion of the tip vortex due to numerical dissipation.
Toward that end, the Euler equations are solved for the � ow over
a NACA 0012 rectangular wing. However, rather than following
the approachof most previous investigators,which has involved the
use of higher-orderdifferencing schemes, the present work focuses
on the use of computationalgrids that provide very high resolution
of the tip vortex without excessive placement of grid points in re-
gions where velocitygradientsare small. This essentiallyprecludes
the use of simple one- and two-block H–H and C–O topologies
that have been used in the past. The advantage of this approach
is clear: One would like to be able to use available computational
� uid dynamics (CFD) codes, the vast majority of which employ
second-orderaccurate spatial operators, to investigate� ow� elds in-
volving tip-generated vortices. In addition, Reynolds stress trans-
port models, which are likely necessary to model accurately the
effects of turbulence on the vortex structure, are simpler to imple-
ment within the context of a second-order rather than higher-order
accurate framework.

The geometry consideredin the presentwork representsthat used
in the experimental investigation of Devenport et al.13 In particu-
lar, the uniform � ow past a rectangular NACA 0012 wing with a
rounded end cap and an aspect ratio of 8.6 is studied. When the
Euler equations are solved, a computational framework is provided
in which the decay of the evolvingvortex may be attributed primar-
ily to numerical dissipation. Consequently, the procedure provides
an excellentmeans of assessingthe adequacyof the grid in resolving
and preservingthe vortexpropertiesas it develops in the streamwise
direction.The results will show that the Euler equationsare capable
of predicting the strength of the tip vortex and, with a well-resolved
grid, convecting the resultantvortical � ow with very low numerical
dissipation. The results are substantiated through comparison with
experimental data presented by Devenport et al.13

Solution Procedure and Computational Grid
In the present work, the steady Euler equations are solved for

the formation and evolution of a wing-tip vortex. The governing
equations are well known, and hence for purposes of brevity are
not shown (cf. White14). Solutions were computed using an un-
structured, segregated, pressure-based � nite volume procedure as
implemented within the Fluent version 5.0 code. Pressure–velocity
coupling within Fluent was achieved using the SIMPLEC method.
Differencingof theconvectiveterms was implementedusinga third-
order, bounded, QUICK interpolation scheme. Fluent employs a
collocated variable scheme, and consequently the pressure must be
interpolated to cell faces; this was performed using a second-order
accurate interpolationscheme (cf. Barth and Jespersen15 ). Solutions
were computed in parallel on a four-processorSilicon GraphicsOri-
gin 2000, with run times on the order of 24 h for grids with approx-
imately 1 £ 106 computationalcells.

AlthoughtheFluent solveremployedutilizesunstructuredgrids,a
multiblockstructuredgridwas developedfor use in this work.Multi-
block structuredgrids have considerablepotential to achieve favor-
able grid smoothness and orthogonality, while retaining � exibility
in the gridding of complex geometries. In addition, a wide range
of solvers are available that may utilize structured grids, including
unstructuredsolvers.However, generatingquality grids through the
use of a large number of blocks is often the most time consuming
aspect of the CFD process. To address this issue, Eiseman16 has
developed a technique that automates much of the structured grid
generation process. This methodology,which is available commer-
cially in the form of the GridPro/az3000TM grid generationpackage
used in this work, relies primarily on the user to input the appropri-

ate wireframegrid topology that needonly roughlyfollowbounding
surfaces.Other factors,suchas surfacegridgenerationandzonecon-
struction,are handledas part of the grid generationsolutionprocess.
This procedure allows one to develop quickly quite complex multi-
block grid topologies with a minimum level of user intervention.
For further information the reader is referred to Refs. 16 and 17.

The computational geometry, a perspective view of which is
shown in Fig. 1a, is modeled after the experimentalcon� gurationof
Devenport et al.13 (the � ow direction is roughly from right to left in
Fig. 1a). The x and y coordinates run in the streamwise and span-
wise directions, respectively; the z coordinate runs in the vertical
direction. The domain extends from ¡4 · x=c · 13, where x D 0
de� nes the leading edge of the NACA 0012 rectangularwing of as-
pect ratio 8.6 (and c is the wing chord length). The wing was � tted
with a roundedend cap and set to an angle of attack of 5 deg. In ad-
dition, in accordancewith the experimentalconditionsof Devenport
et al.,13 a uniform velocity of 38 m/s was set at the inlet of the com-
putational domain, indicating that the � ow was essentially incom-
pressible.(The Reynoldsnumber in the experimentswas 5.3 £ 105 .)
Zero gradient conditionswere set at the outlet; slip-wall conditions
were set on all other boundaries.

The most important aspect concerning the present grid involves
clustering toward the vortex centerline, the trajectory of which is
revealed by the ribbons trailing from the wing tip in Fig. 1a. The
relevant core region is quite narrow. For instance, the experimental
data13 reveals a vortex core radius of 0.027c at x=c D 10, whereas
here, and in the remainder of the paper, we use the traditional def-
inition of the core radius: the radius at which the swirl velocity
is maximum. Alternatively, Spalart1 refers to a larger core radius,
which is de� ned by the edge of the vorticity containing region. Us-
ing eitherde� nition,clusteringef� ciently to such a limited area over
a signi� cant distance in the streamwise direction is quite dif� cult

Fig. 1a Perspective view of the computational grid; 600,928 cells.

Fig. 1b Block outlines of a 12-block grid topology.
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to accomplish using traditional single- or two-block H–H or C–O
topologies. However, by utilizing a larger number of blocks, one
may develop structured grids that are nearly orthogonal and that
very ef� ciently cluster toward the wing-tip and vortex core regions.

Clustering about the vortex core was facilitated by the construc-
tion of a cylindrical surface, which was initiated slightly upstream
of the leading outboard edge of the wing and extended to the out-
let boundary. The cylinder acted as a temporary internal surface
to which block boundaries were attached during the grid solution
process. To locate accurately the cylinder, preliminary calculations
were � rst performed. The resulting � ow� eld was then examined
to identify the vortex trajectory that was subsequently assigned as
the centerline of the cylinder for the construction of a grid with
improved clustering. The radius of this cylinder was set to 0.25c
over 2c · x · 13c, gradually tapering to a radius of 0.001c at
x=c D ¡0:13.

The grid topologyabout the wing surfaceconsistedof O–O wraps
in both the spanwise and chordwise directions. The number of grid

Fig. 2a Grid clustering in the region of the vortex core; 600,928 cell
grid.

Fig. 2b Grid in the region of the wing tip; 600,928 cell grid.

points distributed around the wing surface in the chordwise direc-
tion was set to 160, with signi� cant stretching toward the leading
and trailingedges.The number in the spanwisedirectionvariedwith
respect to the speci� c grid used; additionalpoints resulting from re-
� nementwere clusteredin the region of the wing tip. The wireframe
topology implemented to develop the grid resulted in the creationof
354 elementary blocks. If necessary, these elementary blocks may
then be merged to form a structured grid with as few as 12 blocks.
This 12-block topological structure is shown in Fig. 1b. For use in
the Fluent code, the structuredgrid was convertedto an unstructured
Nastran format. Alternatively, the grid may be output in multiblock
Plot3d format directly from within the Gridpro/az3000environment
for use in structured solvers.

The primary regions of interest for the grid involve the areas sur-
rounding the wing tip and the vortex core. An expanded view of a
600,928 cell grid in the region of the vortex at the outlet boundary
is shown in Fig. 2a. The heavy grid lines correspond to elemen-
tary block boundaries;the outer radial block boundary is coincident
with the aforementioned cylindrical surface, where the cylinder is
of radius 0.25c. The grid topology shown here represents an effec-
tive approach toward gridding the interior of cylindricalgeometries.
As already noted, the location of the cylindrical region in the y–z
plane was adjusted as a function of streamwise location to ensure
that the centers of the vortex and surrounding cylinder were nearly
coincident. Figure 2b shows the grid in the region of the wing tip,
at x=c ¼ 0:5, where a strong clustering toward the tip region was
enforced.The cylindricalregion is again highlightedwith the heavy
grid line; at this location its radius is approximately 0.21c.

Fig. 3 Swirl velocity pro� les computed using various grid resolutions
at x/c = 2.5.

Fig. 4 Streamwise evolution of swirl velocity pro� les computed using
a 1,561,658 cell grid; comparison with experimental data of Devenport
et al.13 for x/c = 10.
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a) x/c = 1.5

b) x/c = 2.0

c) x/c = 2.5

d) x/c = 3.0

e) x/c = 3.5

f) x/c = 10.0

Fig. 5 Contours of the streamwise evolution of axial velocity computed using a 1,561,658 cell grid.
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Results
The results shown in Fig. 3 show the structure of the vortex as

described by the swirl velocity at x=c D 2:5, a point at which the
rollupprocess is essentiallycomplete.Here, and in Figs. 4–7, unless
otherwise stated y is measured relative to the center of the vortex
core. In addition, the swirl velocity Vµ is measured along a line
of constant z, passing through the core center. Velocity pro� les are
shown for grid densities ranging from 372,016 cells to 1,986,000
cells. The relatively narrow vortex core diameter of approximately
0.04c provides a challenge for clustering grid points. The number
of cells across the core diameter ranged from 9 for the 372,016
cell case to 17 for the 1,986,000 cell case. However, one must also
take into account that the core diameter for the � nest grid is about
half that of the 372,016 cell case; consequently, the grid spacing
within the core is decreased by a factor of approximately four. The
results indicate that, in terms of maximum swirl velocities and core
radius, a solution that is nearly grid independentin the rollup region
was achieved with approximately 1.1 £ 106 computational cells.
Although no experimental data are available at this particular lo-
cation, results by Devenport et al.13 for x=c D 10 strongly suggest
that the core diameter predicted here is slightly less than that of
the experiment. The circulation developed by the wing was com-
puted by integratingthe axial componentof vorticityover the outlet

Fig. 6 Displacement of vortex core referenced to y, z coordinate posi-
tion of vortex center at x/c = 1.1.

Fig. 7 Velocity vectors at x/c = 10 for the 1,561,658 cell grid revealing
the position of the vortex within the region of clustering.

boundary.The results showed that 0=.U1b/ D 0.026 for each of the
computational grids (where U1 is the inlet velocity and b is the
wing span).

Once the initial vortex structure is established, solutions to the
Euler equations may be quite valuable in assessing the levels and/or
effects of numerical dissipationas the vortex evolves in the stream-
wise direction. In the absenceof viscous effects, the core radius and
peak swirl velocityof the evolvingvortex should remain nearlycon-
stant. Such an evaluation of the inviscid solution is shown in Fig. 4
for the case employing 1,561,568 computational cells. Experimen-
tal data of Devenport et al.13 for x=c D 10 is also included in Fig. 4.
(For the roundedend-capcase,experimentaldataare availableat this
locationonly. Detailed comparisonswith � at end-capdata are prob-
ably not useful; for instance, the results of Devenport et al. revealed
that, relative to the rounded end cap, use of a � at end cap increased
the core diameter at x=c D 10, by approximately37%.) The numer-
ical results indicate an asymmetry in the vortex at x=c D 2 with the
lower of the peaks occurring on the inboard side. This is likely due
to interference from the wing. This asymmetry has been essentially
eliminated at x=c D 4, primarily through a decrease in the swirl ve-
locity in the outboard region of the vortex. Subsequently,peak swirl
velocities decay relatively slowly, and the core diameter increases
only slightly over the range 4 · x=c · 13. At x=c D 10, the pre-
dicted core radius is less than, and the peak swirl velocity greater
than, the respective experimental values. Speci� cally, the experi-
mental value of the core radius was 0.027c, whereas the predicted
value was approximately 0.021c. To achieve these results, 14 com-
putational cells were distributed over the core diameter at x=c D 2,
increasing to 18 cells at x=c D 10. These results may be contrasted
with the inviscid solutioncomputedusing a higher-ordersolverpre-
sented by Lockard and Morris11 for the same con� guration, where
the predictedvortexcore radius increasedfrom approximately0.07c
at x=c D 2:5 to 0.155c at x=c D 10. That solution employed a two-
block H–H grid with a total of 1.955£ 106 grid points.

Contoursof constantaxial velocity are examined in Figs. 5a–5f at
streamwise locations x=c D 1:5; 2; 2:5; 3; 3:5; and 10, respectively.
The contours at x=c D 1:5 reveal the existence of a jet that is near,
but not coincident with, the center of the vortex. At this point, the
velocity excess at the center of the jet is .U ¡U1/=U1 D 0.10.
As the vortex evolves in the streamwise direction, the jet begins
to wrap around a developing wake region. The developing wake
pro� le does, in fact, coincide with the center of the vortex. This
process is clearly shown in Figs. 5c–5e. At x=c D 10, the axial ve-
locity distribution around the core has become nearly symmetric
with defect .U ¡ U1/=U1 D ¡0:012 at the center of the vortex.
The wake is surrounded by an annular jetlike region with peak
value .U ¡ U1/=U1 D 0.029 at y=c D 0:028. This location is quite
close to the vortex core radius of 0.021c. The magnitude of the
defect within the wake is, however, considerably less than that in
the experiment,13 where .U ¡ U1/=U1 D ¡0:19. In addition, the
annular jetlike pro� le surrounding the core found in the numerical
results was not observed in the experiments.

The displacementof thevortexcoreas it evolvesin the streamwise
directionis shownin Fig. 6, where the locationof thevortexhas been
referenced to the location of the wing tip at y D 4.3, z D 0.0. Exper-
imental data of Devenport et al.13 (however, with a � at end cap) is
included in Fig. 6 for the spanwise movement of the vortex. Good
agreement is obtained at x=c D 6; however, the experiment shows
muchgreater spanwisede� ectionat x=c D 11. Experimentaldata for
the vertical movement have not been included in Fig. 6 due to dif� -
culties in referencingthe vortex locationwith respectto the wing tip.
Nevertheless,the motion of the core in the z directionas determined
by Devenport et al. was upward, with an absolute displacement of
approximately0.1 over the range6 · x=c · 11.This verticalmove-
ment is greater than that observed in the calculation. Lockard and
Morris12 observed qualitatively similar behavior when comparing
their numerical results with the results of Devenport et al.13

To minimize numerical dissipation, the computationalcells must
be clustered about the quite narrow region of the vortex core. Cal-
culations revealed that a slight displacement of the vortex outside
the cluster region leads to considerable degradation of the results.
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The velocity vectors shown in Fig. 7 indicate the placement of the
vortex within the cluster for the 1,561,568 cell grid at x=c D 10,
where the diameter of the computational domain shown in Fig. 7 is
approximately 0.23c. This clustering may be quite easily extended
arbitrary distances downstream.

The inviscid calculations do not account for the effect of the no-
slip surface, and the source of diffusion over the interior of the � uid
is solely due to truncationerror. Consequently,the solutionscan not
be expected to provide accurate information regarding the detailed
structure of the rolled-up tip vortex. Nevertheless, the results pre-
sentedhave shown that solutionsto the Euler equationsmay provide
anexcellentestimateof thevortexcorediameterand associatedpeak
swirlvelocities for up to 12 chords downstream of the wing trailing
edge. Discrepancies with experimental results in the axial velocity
pro� les are greater and may well be attributedto the lack of a no-slip
condition on the wing surface.

Summary
Using a second-order-accurate procedure, solutions to the Euler

equationswere obtained for the evolutionof a wing-tipvortexover a
streamwisedistanceof 13 chords.By clusteringgrid points strongly
in the vortex core, results were obtained that did not suffer from the
extensive effects of numerical dissipation common in calculations
of this type. In fact, with suf� ciently � ne grids, the vortex core ra-
dius predictedby the Euler solutionswas smaller than that observed
experimentally. The corresponding peak swirl velocities also ex-
ceeded the experimental values. The author is not aware of any
other publishedstudies where this behavior has been demonstrated.
However, this result is not surprising considering the inviscid and,
hence, nondissipative nature of the equations, and the low levels
of numerical dissipation associated with a very � ne grid in the tip
and core regions. Extending the computational domain to arbitrary
x=c with accurate clustering about the vortex centerline poses no
additional problems.

In summary, the procedurepresentedpresents a viablealternative
to using higher-order numerical methods for the solution of the tip
vortex problem. The work also represents an important � rst step
before performing calculations of tip vortex � ows using Reynolds-
averaged Navier–Stokes formulations in that guidance is provided
in terms of minimum required grid resolution for the viscous case,
where to predict accurately the vortex structure, the levels of nu-
merical viscosity should be small relative to the natural viscosity.
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